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Large numbers of antennas

4 RIS Beam Training is a Key Challenge

Narrow beams

Hao Luo Ahmed Alkhateeb
Arizona State University Arizona State University
\

~

\&

» RIS offers an opportunity for high spatial-resolution imaging

Can imaging assist RIS beam training for communication?
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» Imaging model (based on beamformed FMCW)
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Problem Formulation

RIS reference
element

» RIS-aided depth estimation
= eniingcodcbook JRRR Ocvir cxomtion function

sensing grid

[Taha’23] A. Taha, H. Luo, and A. Alkhateeb, “Reconfigurable Intelligent Surface Aided Wireless Sensing for Scene Depth Estimation,” in IEEE ICC, 2023.
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Received signal matrix after
sensing beam sweeping

»> RIS beam selection problem with a predefined codebook

Optimal beam index
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» Objective: Find the optimal beam based on user detection
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(estimated during offline stage)
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User Detection in RIS-based Depth Map

Estimated depth map
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Remove detection noise
(use DBSCAN clustering algorithm)

Subtraction
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- Removed undesired paths
+ (set negative values to zero)
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Convert to a binary map

» To determine the azimuth and zenith angles towards the user

Find the mean of the user’s pixel coordinates
Each pixel is estimated by a sensing beam of a predefined

reflected direction
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RIS Beam Selection

Decomposition of RIS interaction vector

response vector

Angles towards the AP (known)

Angles towards the user

Similarities between estimated beam and codebook beams

Note: A set of candidate beams can be found by sorting the
codebook based on the calculated similarities
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Simulation Results

> Simulation framework

* RIS structure: 40x40 UPA
 Operating band: 60 GHz

e Comm. codebook: Beamsteering

* Floor plan design: Blender

e Ray-tracing simulator: Wireless Insite

 Userisinthe NLoS area (red box)

Note: Normalized beamforming gain is the ratio of beamforming gain to equal-gain beamforming gain
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— =-Equal-gain beamforming
- ~Exhaustive search, OSF=1
— -Exhaustive search, OSF=4 |
-O-Proposed beam selection, OSF=1

Normalized beamforming gain (dB)

-O-Proposed beam selection, OSF=4
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» Oversampled codebook provides better beamforming gain
» With oversampling factors of four in azimuth and zenith

Achieve comparable performance to the exhaustive search
Require 1000 times less beam training overhead




