
z[u, v] =

K∑

k=1

Lk∑

ℓ=1

√

ρk,ℓ e
−ȷϑk,ℓ e+ȷΞk,ℓ + ws[u, v]e

ȷχ[u] (1)

Ø Imaging model (based on beamformed FMCW)

Ø Communication model

Large numbers of antennas Narrow beams
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Ø RIS offers an opportunity for high spatial-resolution imaging

Can imaging assist RIS beam training for communication?

SystemModel

Ø Decomposition of RIS interaction vector

Ø Simulation framework

Ø Results

Ø Oversampled codebook provides better beamforming gain
Ø With oversampling factors of four in azimuth and zenith
• Achieve comparable performance to the exhaustive search
• Require 1000 times less beam training overhead
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Problem	Formulation
Ø RIS-aided depth estimation

Ø RIS beam selection problem with a predefined codebook

• RIS structure: 40×40 UPA

• Operating band: 60 GHz

• Comm. codebook: Beamsteering

• Floor plan design: Blender

• Ray-tracing simulator: Wireless Insite

• User is in the NLoS area (red box)

Received signal

AP-RIS channelRIS-UE channel
RIS interaction vector
for communication

Received baseband
digital signal

Ø Similarities between estimated beam and codebook beams

User detection function Optimal beam index

Sensing codebook Depth estimation function

[Taha’23] A. Taha, H. Luo, and A. Alkhateeb, “Reconfigurable Intelligent Surface Aided Wireless Sensing for Scene Depth Estimation,” in IEEE ICC, 2023.

Ø To determine the azimuth and zenith angles towards the user
• Find the mean of the user’s pixel coordinates
• Each pixel is estimated by a sensing beam of a predefined

reflected direction

Estimated depth map

Subtraction

Background depth map
(estimated during offline stage)
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Removed undesired paths
(set negative values to zero)

Convert to a binary mapRemove detection noise
(use DBSCAN clustering algorithm)

Ø Note: A set of candidate beams can be found by sorting the
codebook based on the calculated similarities

RIS interaction vector Far-field array
response vector

AP-side beam

UE-side beam

ψ̃c
= ψ̃c

AP
⊙ ψ̃c

UE

Angles towards the AP (known)

Angles towards the user

Selected beam index

Ø Objective: Find the optimal beam based on user detection

Fs

RIS reference
element

Rectangular
sensing grid

Received signal matrix after
sensing beam sweeping

𝑣!" sensing beam (chirp)

Path gain and phase𝑢!" ADC sample

Contain range information

Note: Normalized beamforming gain is the ratio of beamforming gain to equal-gain beamforming gain

ψ̃c

AP
= a

∗(θAP)

ψ̃c

UE
= a

∗(θUE)

yc = (hR ⊙ hT )
Tψc

xc + wc

Dmap = pd(Z;Fs)

(θ̃azUE, θ̃
ze
UE) = pu(Dmap)

m̃ = argmax
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m
∈Fc
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m
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Equal-gain beamforming
Exhaustive search, OSF=1
Exhaustive search, OSF=4
Proposed beam selection, OSF=1
Proposed beam selection, OSF=4


