Digital Twin Aided Compressive Sensing: Enabling Site-Specific MIMO Hybrid Precoding

Hao Luo and Ahmed Alkhateeb

- Wireless Intelligence Laboratory (WI-Lab) School of Electrical, Computer, and Energy Engineering Arizona State University
- **Asilomar Conference on Signals, Systems, and Computer, 2024**

Wireless Intelligence Lab

Motivation

- MIMO systems can employ large antenna arrays to improve spectral efficiency
 - Achieve high beamforming gain *
 - Enable spatial multiplexing *
- Traditional fully-digital array architecture
 - Hardware cost *
 - Power consumption *
- Hybrid analog/digital architecture
 - Fewer RF chains are deployed *
 - Channel estimation becomes challenging *

Hybrid architecture requires efficient channel estimation and precoder design methods

[Ayach'14] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, "Spatially Sparse Precoding in Millimeter Wave MIMO Systems," IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499–1513, 2014.

Prior work

Compressive sensing based methods [Alkhateeb'14]

- Quantize the channel with an over-complete dictionary *
- Leverage random measurement for sparse recovery *

Machine learning (ML) based methods [Li'19]

- Jointly learn channel sensing and hybrid precoding *
- Capture promising directions of the channel *

Data-driven methods require a large amount of training data

Site-specific digital twins can reduce data collection overhead

[Alkhateeb'14] A. Alkhateeb, O. El Ayach, G. Leus and R. W. Heath, "Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems," in IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 831-846, Oct. 2014. [Li'19] X.Li and A.Alkhateeb, "Deep Learning for Direct Hybrid Precoding in Millimeter Wave Massive MIMO Systems," in Proc. of 53rd Asilomar Conference on Signals, Systems, and Computers, 2019, pp. 800–805.

System model

Processed received signal

$$\mathbf{y} = \mathbf{W}^{H} \mathbf{H} \mathbf{F} \mathbf{s} + \mathbf{W}^{H} \mathbf{n}$$
Combiners
$$\mathbf{W} = \mathbf{W}_{RF} \mathbf{W}_{BB}$$

$$\mathbf{F} = \mathbf{F}_{RF} \mathbf{F}_{BB}$$

Geometric channel model

$$\mathbf{H} = \sum_{l=1}^{L} \alpha_l \mathbf{a}_{\mathrm{r}}(\theta_l) \mathbf{a}_{\mathrm{t}}^{H}(\phi_l)$$

Spectral efficiency

$$R = \log_2 |\mathbf{I} + \mathbf{Q}^{-1} \mathbf{W}^H \mathbf{H} \mathbf{F} \mathbf{F}^H \mathbf{H}^H \mathbf{W}|$$
$$\downarrow$$
$$\mathbf{Q} = \frac{1}{\text{SNR}} \mathbf{W}^H \mathbf{W}$$

Compressive sensing based channel estimation

Sparse formulation of channel estimation

Classically, random measurement vectors are used to perform channel sensing

[Alkhateeb'14] A. Alkhateeb, O. El Ayach, G. Leus and R. W. Heath, "Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems," in IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 831-846, Oct. 2014.

Dictionary matrix Complex gains (sparse vector)

Problem formulation

Measurement codebook design

 $\mathbf{P}, \mathbf{Q} = f(\mathcal{D})$

Transmit/receive measurement codebooks

Sparse formulation of channel estimation

 $\mathbf{y} = \sqrt{P} (\mathbf{P}^T \otimes \mathbf{Q}^H) \mathbf{A}_{\mathrm{D}} \mathbf{z} + \mathbf{n}_{\mathrm{Q}}$

Hybrid precoder/combiner design

 $\max_{\{\mathbf{F}_{BB}, \mathbf{F}_{RF}, \mathbf{W}_{BB}, \mathbf{W}_{RF}\}} \log_2 |\mathbf{I} + \mathbf{Q}^{-1} \mathbf{W}^H \widehat{\mathbf{H}} \mathbf{F} \mathbf{F}^H \widehat{\mathbf{H}}^H \mathbf{W}|,$

s.t.
$$\mathbf{F} = \mathbf{F}_{\mathrm{RF}} \mathbf{F}_{\mathrm{BB}},$$

 $\mathbf{W} = \mathbf{W}_{\mathrm{RF}} \mathbf{W}_{\mathrm{BB}},$
 $\mathbf{F}_{\mathrm{RF}} \in \mathcal{F}, \quad \forall n_{\mathrm{t}},$
 $\mathbf{W}_{\mathrm{RF}} \in \mathcal{W}, \quad \forall n_{\mathrm{r}},$
 $\|\mathbf{F}_{\mathrm{RF}} \mathbf{F}_{\mathrm{BB}}\|_{F}^{2} = N_{\mathrm{S}}.$
 $\|\mathbf{F}_{\mathrm{RF}} \mathbf{F}_{\mathrm{BB}}\|_{F}^{2} = N_{\mathrm{S}}.$
 $\|\mathbf{T}_{\mathrm{ransmit}} \operatorname{power}_{\mathrm{constraint}}$

These problems can be jointly solved with ML and site-specific digital twins

[Alkhateeb'16] A. Alkhateeb and R. W. Heath, "Frequency Selective Hybrid Precoding for Limited Feedback Millimeter Wave Systems," IEEE Transactions on Communications, vol. 64, no. 5, pp. 1801–1818, 2016.

Proposed solution: Digital twin construction

- The real-world channel is determined by
 - **Communication environment**: Positions, orientations, dynamics, shapes, and EM materials of the objects *
 - Signal propagation law *
 - Hardware characteristics (assumed to be known) *
- Digital twins
 - Approximate the communication environment using electromagnetic (EM) 3D model *
 - Approximate the signal propagation law using ray tracing *

[Alkhateeb'23] A. Alkhateeb, S. Jiang, and G. Charan, "Real-Time Digital Twins: Vision and Research Directions for 6G and Beyond," IEEE Communications Magazine, vol. 61, no. 11, pp. 128–134, 2023.

Proposed solution: Deep learning based compressive sensing

Channel encoder $\mathbf{z} = f_{enc}(\mathbf{h})$ $\hat{\mathbf{p}}$ \mathbf{M} Mimic channel measurements \mathbf{p} $\mathbf{z} = \sqrt{P} \operatorname{vec}(\mathbf{Q}^{H} \mathbf{HP}) + \operatorname{vec}(\mathbf{Q}^{H} \mathbf{N})$ \mathbf{D} Objection $\mathbf{Trainable parameters}$ \mathbf{CE}

[Li'19] X.Li and A.Alkhateeb, "Deep Learning for Direct Hybrid Precoding in Millimeter Wave Massive MIMO Systems," in Proc. of 53rd Asilomar Conference on Signals, Systems, and Computers, 2019, pp. 800–805.

RF precoder/combiner predictor

$$\widehat{\mathbf{p}} = f_{\text{pred},t}(\mathbf{z})$$
 $\widehat{\mathbf{q}} = f_{\text{pred},r}(\mathbf{z})$

Probability distributions of the codebook indices

ective function

$$E(\mathbf{p}, \mathbf{q}, \widehat{\mathbf{p}}, \widehat{\mathbf{q}}) = -\left(\sum_{i=1}^{|\mathcal{F}|} p_i^* \log \widehat{p}_i + \sum_{j=1}^{|\mathcal{W}|} q_j^* \log \widehat{q}_j\right)$$

8

Proposed solution: Digital twin aided compressive sensing

[Mansour'09] Y. Mansour, M. Mohri, and A. Rostamizadeh, "Domain Adaptation: Learning Bounds and Algorithms," arXiv preprint arXiv:0902.3430, 2009.

$$) - \mathcal{L} \left(\Theta_{enc}^{\star}, \Theta_{pred,t}^{\star}, \Theta_{pred,r}^{\star}, \mathcal{H} \right)$$

$$\Theta_{\text{enc}}^{\star}, \Theta_{\text{pred},t}^{\star}, \Theta_{\text{pred},r}^{\star}, \mathcal{H})$$

disc $(\mathcal{H}, \widetilde{\mathcal{H}}) + \epsilon$, Discrepancy between two distributions

Proposed solution: Model refinement with real-world data

- Building a digital twin that perfectly mimics the real-world environment is challenging
- The model trained on DT data can be fine-tuned with a small amount of real-world data
- Rehearsal fine-tuning strategy: Training with both previously learned and new data samples

How many real-world data samples do we need for fine-tuning?

[Robins'95] A. Robins, "Catastrophic Forgetting, Rehearsal and Pseudorehearsal," Connection Science, vol. 7, no. 2, pp. 123–146, 1995.

Simulation setup

- Target (real-world) scenario
 Built based on downtown Boston
 BS with 32-antenna ULA
 Single-antenna user
 Digital twin scenario
 Neglect foliage model
 Has building position errors
- Dataset generation
 - * Wireless Insite ray-tracing simulator
 - * DeepMIMO channel generator
- Deep learning architecture
 - * Channel encoder: ID complex-valued CNN
 - * RF precoder predictor: Fully-connected layers

Next, we evaluate the model trained on DT data

[Alkhateeb'19] A. Alkhateeb, "DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications," in Proc. of Inf. Theory and Appl. Workshop, 2019, pp. 1–8.

Simulation results: Prediction accuracy vs. number of measurement vectors

- The number of data samples is 10240 for both target and DT scenarios
- With the modeling error of 1 meter in building positions, the model can achieve 95% accuracy
- 8 measurement vectors are sufficient to capture promising directions

The model trained on DT data performs well on target data

The modeling errors cause a degradation in performance

					U
					Ĭ
ites					
ices					
ctors					
-Trained on target (real) data					
Trained on DT synthetic data (1-meter error)					
20		2	25		0

Simulation results: Beamforming pattern

- The number of measurement vectors is set to {1, 8}
- The learned measurement vectors focus the power on the directions ranging from 120° and 180°

Simulation results: Beamforming pattern

Trained on real

- The number of measurement vectors is set to {1, 8}
- The learned measurement vectors focus the power on the directions ranging from 120° and 180°
- The model can learn the promising spatial directions from the DT synthetic data

The learned measurement vectors adapt to geometry and user distribution

on the directions ranging from 120° and 180° from the DT synthetic data

Simulation results: Model refinement

- The number of antenna is set to 8
- The models are pre-trained on 10240 synthetic data points, and fine-tuned on target data
- Less number of real-world data points are needed to achieve the same performance

Digital twins can reduce the data collection overhead

Conclusion and future work

- We propose leveraging site-specific DT to aid MIMO systems with hybrid architectures
 - Generating DT synthetic data for training channel encoder and RF precoder predictor *
 - Refining the model trained on DT synthetic data with a small amount of target data *
- The results highlight the efficacy of the proposed solution
 - The model trained on DT data performs well on target data *
 - The learned measurement vectors adapt to environment geometry and user distribution *
 - Model refinement can further improve the performance with smaller data collection overhead *
- Future work
 - Considering the scenario with multiple-antenna users *
 - Evaluating the performance of DT on data collected in the physical world *

The code and dataset files of this paper is available at www.wi-lab.net

Thank you!