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MIMO systems can employ large antenna arrays to improve spectral efficiency
Achieve high beamforming gain

Enable spatial multiplexing

Motivation
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Hybrid analog/digital architecture
Fewer RF chains are deployed

Channel estimation becomes challenging

[Ayach’14] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially Sparse Precoding in Millimeter Wave MIMO Systems,” IEEE Transactions 
on Wireless Communications, vol. 13, no. 3, pp. 1499–1513, 2014. 

Hybrid architecture requires efficient channel estimation and precoder design methods

Traditional fully-digital array architecture
Hardware cost

Power consumption



Compressive sensing based methods [Alkhateeb’14]
Quantize the channel with an over-complete dictionary

Leverage random measurement for sparse recovery

Prior work
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Machine learning (ML) based methods [Li’19]
Jointly learn channel sensing and hybrid precoding

Capture promising directions of the channel

[Alkhateeb’14] A. Alkhateeb, O. El Ayach, G. Leus and R. W. Heath, "Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems," 
in IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 831-846, Oct. 2014.
[Li’19] X.Li and A.Alkhateeb, “Deep Learning for Direct Hybrid Precoding in Millimeter Wave Massive MIMO Systems,” in Proc. of 53rd Asilomar Conference on 
Signals, Systems, and Computers, 2019, pp. 800–805. 

Data-driven methods require a large amount of training data

Site-specific digital twins can reduce data collection overhead

BS

BS

Random
measurement vectors

Learned
measurement vectors



System model
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Processed received signal Geometric channel model

Spectral efficiency

y = WHH F s+WHn (1)

F = FRFFBBW = WRFWBB

Combiners Precoders

H =

L∑
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αlar(θl)a
H

t
(φl), (1)

R = log
2
|I+Q−1WHHFFHHHW| (1)

Q =
1

SNR
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Compressive sensing based channel estimation
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BS

UE

Classically, random measurement vectors are used to perform channel sensing

Sparse formulation of channel estimation

y =
√
P (PT ⊗QH)ADz+ nQChannel measurements

Complex gains (sparse vector)

Random
measurement vectors

[Alkhateeb’14] A. Alkhateeb, O. El Ayach, G. Leus and R. W. Heath, "Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems," 
in IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 831-846, Oct. 2014.

Dictionary matrix

Design transmit/receive
measurement codebook



Measurement codebook design

Problem formulation
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Hybrid precoder/combiner design

These problems can be jointly solved with ML and site-specific digital twins

Sparse formulation of channel estimation

P,Q = f(D) (1)

y =
√
P (PT ⊗QH)ADz+ nQ

max
{FRF,WRF}

log2 |I+ SNRW
H
RF

ĤFRF

×
(
F

H
RF

FRF

)− 1

2
F

H
RF

Ĥ
H
WRF|,

s.t. FRF ∈ F , ∀nt,

WRF ∈ W , ∀nr,

(1)

[Alkhateeb’16] A. Alkhateeb and R. W. Heath, “Frequency Selective Hybrid Precoding for Limited Feedback Millimeter Wave Systems,” IEEE Transactions on
Communications, vol. 64, no. 5, pp. 1801–1818, 2016.

max
{FBB,FRF,WBB,WRF}

log2 |I+Q−1WHĤFFHĤHW|,

s.t. F = FRFFBB,

W = WRFWBB,

FRF ∈ F , ∀nt,

WRF ∈ W , ∀nr,

‖FRFFBB‖
2

F = NS.

(1)

Transmit power
constraint

Pre-defined
codebook

RF precoder/combiner contain
orthogonal vectors

Transmit/receive
measurement codebooks

Collected channel data
Task I:

Learn measurement codebooks

Task II:
Predict RF beams



Proposed solution: Digital twin construction
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The real-world channel is determined by
Communication environment: Positions, orientations, dynamics, shapes, and EM materials of the objects

Signal propagation law

Hardware characteristics (assumed to be known)

Digital twins
Approximate the communication environment using electromagnetic (EM) 3D model
Approximate the signal propagation law using ray tracing

[Alkhateeb’23] A. Alkhateeb, S. Jiang, and G. Charan,“Real-Time Digital Twins: Vision and Research Directions for 6G and Beyond,” IEEE Communications 
Magazine, vol. 61, no. 11, pp. 128–134, 2023.



Proposed solution: Deep learning based compressive sensing
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Channel encoder

Objective function

RF precoder/combiner predictor

CE(p,q, p̂, q̂) = −

⎛

⎝
|F|∑

i=1

p
!
i log p̂i +

|W|∑

j=1

q
!
j log q̂j

⎞

⎠ (1)

z = fenc(h) (1)

Mimic channel measurements

p̂ = fpred,t(z), (1)

q̂ = fpred,r(z), (2)

[Li’19] X.Li and A.Alkhateeb, “Deep Learning for Direct Hybrid Precoding in Millimeter Wave Massive MIMO Systems,” in Proc. of 53rd Asilomar Conference on 
Signals, Systems, and Computers, 2019, pp. 800–805. 

p̂ = fpred,t(z), (1)

q̂ = fpred,r(z), (2)

Probability distributions of the codebook indices

z =
√

Pvec(QHHP) + vec(QHN)

h

Trainable parameters



Proposed solution: Digital twin aided compressive sensing
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Generate synthetic
channel data

Objective

Direct generalization
∣∣∣L

(
Θ̃enc, Θ̃pred,t, Θ̃pred,r,H

)
−L

(
Θ!

enc,Θ
!

pred,t,Θ
!

pred,r,H
)∣∣∣ (1)

≤ L

(
Θ̃enc, Θ̃pred,t, Θ̃pred,r, H̃

)
+ disc

(
H, H̃

)
+ ε,

min
f̃enc(;Θ̃enc)

f̃pred,t(;Θ̃pred,t)

f̃pred,r(;Θ̃pred,t)

∣∣∣L
(
Θ̃enc, Θ̃pred,t, Θ̃pred,r,H

)
− L

(
Θ!

enc,Θ
!
pred,t,Θ

!
pred,r,H

) ∣∣∣, (1)

Model trained on DT data Model trained on real data

[Mansour’09] Y. Mansour, M. Mohri, and A. Rostamizadeh, “Domain Adaptation: Learning Bounds and Algorithms,” arXiv preprint arXiv:0902.3430, 2009.

Discrepancy between two distributions

Performance evaluated on real data



Proposed solution: Model refinement with real-world data
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Collect a small amount
of real-world data

Building a digital twin that perfectly mimics the real-world environment is challenging 

The model trained on DT data can be fine-tuned with a small amount of real-world data

Rehearsal fine-tuning strategy: Training with both previously learned and new data samples

How many real-world data samples do we need for fine-tuning?

[Robins’95] A. Robins, “Catastrophic Forgetting, Rehearsal and Pseudorehearsal,” Connection Science, vol. 7, no. 2, pp. 123–146, 1995.



Target (real-world) scenario
Built based on downtown Boston

BS with 32-antenna ULA

Single-antenna user

Simulation setup
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Next, we evaluate the model trained on DT data

Foliage

User grid

BS

BS orientationDigital twin scenario
Neglect foliage model

Has building position errors

Deep learning architecture
Channel encoder: 1D complex-valued CNN
RF precoder predictor: Fully-connected layers

Dataset generation
Wireless Insite ray-tracing simulator

DeepMIMO channel generator

[Alkhateeb’19] A. Alkhateeb, “DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications,” in Proc. of Inf. Theory 
and Appl. Workshop, 2019, pp. 1–8. 



Simulation results: Prediction accuracy vs. number of measurement vectors
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The number of data samples is 10240 for both target and DT scenarios

The model trained on DT data performs well on target data

8 measurement vectors are sufficient to capture promising directions

With the modeling error of 1 meter in building positions, the model can achieve 95% accuracy

The modeling errors cause a degradation in performance

The performance saturates 
with 8 measurement vectors



Simulation results: Beamforming pattern
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The number of measurement vectors is set to {1, 8}

The learned measurement vectors focus the power on the directions ranging from 120° and 180°
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Simulation results: Beamforming pattern
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The learned measurement vectors adapt to geometry and user distribution

The number of measurement vectors is set to {1, 8}

The learned measurement vectors focus the power on the directions ranging from 120° and 180°

The model can learn the promising spatial directions from the DT synthetic data
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Simulation results: Model refinement
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The number of antenna is set to 8

Less number of real-world data points are needed to achieve the same performance

The models are pre-trained on 10240 synthetic data points, and fine-tuned on target data

Digital twins can reduce the data collection overhead

DT synthetic data provides
good prior information

Model pre-trained on DT data
requires fewer target data points



Conclusion and future work
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We propose leveraging site-specific DT to aid MIMO systems with hybrid architectures
Generating DT synthetic data for training channel encoder and RF precoder predictor

Refining the model trained on DT synthetic data with a small amount of target data

The results highlight the efficacy of the proposed solution
The model trained on DT data performs well on target data

The learned measurement vectors adapt to environment geometry and user distribution

Model refinement can further improve the performance with smaller data collection overhead

Future work
Considering the scenario with multiple-antenna users

Evaluating the performance of DT on data collected in the physical world

The code and dataset files of this paper is available at www.wi-lab.net



Q&A

Thank you!
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