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Envisioned V2V communications
• Sensor-supported safety applications

• Demand high data rate

Challenges with vehicle-to-vehicle (V2V) communications
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mmWave and THz communications
• High data transfer speeds

• Large antenna array and narrow beam

• Accurate narrow beam alignment

Narrow beam

Finding the optimal narrow beam results in a large training overhead



High mobility

Rapidly changing beam

Challenges with vehicle-to-vehicle (V2V) communications
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It is challenging to support highly-mobile vehicular scenarios

Finding the optimal narrow beam results in a large training overhead

Envisioned V2V communications
• Sensor-supported safety applications

• Demand high data rate

mmWave and THz communications
• High data transfer speeds

• Large antenna array and narrow beam

• Accurate narrow beam alignment



Key idea: Radar-aided beam tracking
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Channels are the functions of
• Geometry of the environment

• Position/direction of the Tx/Rx

Multi-modal vehicular sensors
• Already available for other applications

• Example:Automotive radar sensors
LoS Path

Strong NLoS Path

Can the developed solutions perform well in the real world?

Can we use radar sensing for beam tracking in V2V scenarios?



System model
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A receiver vehicle
• A set of linear mmWave antenna arrays
• A set of off-the-shelf FMCW radars
• Cover the whole circular directions

Radar-aided mmWave beam tracking
1. Observe a sequence of radar measurements

2. Predict the optimal beam

d ∈ {front, right, back, left}

A transmitter vehicle with a single antenna

𝑡 − 𝑇! + 1 𝑡 − 1 𝑡…

Radar sensing information

Observation window (𝑇!)

Current beam



max
d,b

|fHd,bhd|
2

s.t. d ∈ {front, right, back, left},

b ∈ {1, . . . , B}.

(1)

System model
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Channel model

hd =
∑Ld

l=1
αd,la(θ

az
d,l, θ

el
d,l)

Power gain Combining vector

Data symbol

Noise

Fd = {fd,1, . . . , fd,B}

Pre-defined codebook

Optimal direction and beam index

Complex path gain Array response vector

Number of paths

Communication model

Received signal

yd =
√
EcfHd hds+ n



System model
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stxchirp(t) =

{

sin
(

2π[f0t+
S

2
t2]

)

if 0 ≤ t ≤ Tactive

0 otherwise
(1)

stxframe(t) =
√

Et

Mchirp−1
∑

c=0

stxchirp(t− c · TPRI), 0 ≤ t ≤ Tframe (1)

srxchirp(t) =
√

EtEr exp

(

j2π

[

Sτ t+ f0τ −
S

2
τ2
])

(1)

t

f(t)

f0

f0 +BW

BW

fIF = Sτ

τ

Round-trip time of
sensing signal

Transmission power
gain

Reflection/scattering
gain

Chirp signal

Transmit signal (Radar frame)

IF signal of a chirp

Radar model

t

f(t)

TPRI

one frame with Mchirp chirps

Tactive

· · ·
BW

f0 +BW

f0

S = BW/Tactive



Radar-aidedV2V beam tracking problem

Challenges in the real world
i. Multiple objects in the highly dynamic environment

ii. Noisy radar data from the mobile receiver/radar

iii. Multiple potential directions of linear arrays
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• Focus on the tracking within a single receive array/radar pair

• Assume the receive array/radar pair does not change within the sequence of samples

• The proposed algorithm needs to accommodate the data from different array/radar pairs

In this work, we aim to answer the following questions
• Can we use radar sensing for beam tracking inV2V scenarios?
• Can the developed algorithms work well in the real world?

Simplify this challenge

Induce additional difficulty



Radar-aidedV2V beam tracking problem
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Mapping function – Convert the observed sensing and beam info. into the optimal beam index

Objective – Design a mapping function that targets optimal beam prediction

How can we develop an efficient solution for this problem?

fΘ(X t, b
∗

t−To+1
) = b∗

t

f̂
Θ̂

= argmax
f,Θ

1

T

T∑

t=1

1{b∗t=fΘ(X t,b
∗

t−To+1
)} (1)

X t = {Xt−To+1, . . . ,Xt} Mapping
Function

Radar
Measurements

Optimal
Beam Index

Previous Beam
Information

b
∗

t−To+1

b
∗

t
𝑡 − 𝑇! + 1 𝑡 − 1 𝑡…

Radar sensing information

Observation window (𝑇!)

Current beam



Approach 1: Beam tracking with transmitter identification
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Overview

Object
Detection

Radar
Pre-processing Tx Identification

and Tracking
Beam

Tracking

Detected
Objects

Tracked
Tx Info.

Predicted
Beam Index



Approach 1: Beam tracking with transmitter identification

I. Radar pre-processing
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H
RD =

∑Mant

a=1
|F2D(Xa,:,:)|

H
RC = |F3D(X)|

Range-Doppler Map

Radar Cube Detected object

II. Object detection
• Apply CFAR method and clustering algorithm to range-Doppler maps
• Estimate the angle from the range and Doppler slice in the radar cube

Overview

Object
Detection

Radar
Pre-processing Tx Identification

and Tracking
Beam

Tracking

Detected
Objects

Tracked
Tx Info.

Predicted
Beam Index



Approach 1: Beam tracking with transmitter identification

12

III. Transmitter identification with the first radar measurement

Identified Tx

Find the
closest angle

Antenna array

Beam angle

Overview

Object
Detection

Radar
Pre-processing Tx Identification

and Tracking
Beam

Tracking

Detected
Objects

Tracked
Tx Info.

Predicted
Beam Index

IV. Transmitter tracking – Find the closest object

Next sample

Identified Tx Tracked Tx

Given beam
information



Approach 1: Beam tracking with transmitter identification
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V. Beam tracking
• Input: Tracked transmitter information (range, Doppler, angle)
• Output: Prediction of current optimal beam index

Object
Detection

Radar
Pre-processing Tx Identification

and Tracking
Beam

Tracking

Detected
Objects

Tracked
Tx Info.

Predicted
Beam Index

Overview



Approach II: Beam tracking with end-to-end ML

End-to-end learning
• Input: Range-Doppler maps, previous optimal beam index
• Output: Prediction of current optimal beam index
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Overview

Radar Maps Beam
Tracking

Predicted
Beam IndexRadar

Pre-processing

Radar
Measurements

Input
Radar Maps

Neural Network

CNN & FC Layers LSTM Layers FC Layers

LSTM Unit

Output
Predicted Beam

Previous Optimal Beam

LSTM Unit

LSTM Unit



Evaluation setup: DeepSense 6G dataset
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mmWave Rx

FMCW Radar

Unit 1

Unit 2

mmWave Rx

FMCW Radar

Unit 1

Unit 2

Mobile receiver (Unit 1)
• Four FMCW radars – Each radar employs one transmit antenna and four receive antennas
• Four 60GHz mmWave antenna arrays – Each array has an ULA structure with 16 antennas
• Oversampled beamforming codebook with 64 beams
• FMCW radars operate at a different frequency band (Starting frequency: 77GHz) than the communication

V2V Testbed

Mobile transmitter (Unit 2)
• 60GHz omnidirectional antenna

DeepSense 6G Dataset

A large scale real-world multi-modal dataset

Co-existing sensing and wireless data



Evaluation setup:AI-ready dataset and metric

Max observation window length: 𝑇" = 10
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𝑡 − 9 𝑡 − 1 𝑡…

Radar sensing information

Observation window (𝑇! = 10)

Current beam

AI-Ready Dataset

Evaluation Metric

Number of data sequences: 3649

Data split (Train/Test): 70/30%

Top-k accuracy

Acctop-k =
1

Nsample

Nsample∑

i=1

k∑

j=1

1{b∗i =b̂i,j} (1)

Optimal beam index

Predicted beam index with the 𝒋 highest confidence score

Keep the sequences with changing beam indices



Results:Top-k accuracy of beam tracking
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Previous beam is used as the predicted beam

Beam-hold method (Baseline)

End-to-end solution

Transmitter identification based solution

±1 and ±2 indices are used for top-3 and -5 predictions

b̂t = b
!

t−To+1

Outperform the baseline method

Provide gain by using the radar-aided beam tracking

Limited by the low angular resolution of the radar

The end-to-end solution shows the potential of radar-aided beam tracking

Gain provided by end-to-end solution in top-5 prediction



Results: Confusion matrix of predictions
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Approach I: Transmitter Identification Approach II: End-to-End Learning

The low resolution of the radar causes a bias towards specific bins in the Tx tracking

The end-to-end solution is able to overcome the low radar resolution

The end-to-end learning refines the given beam index with the radar information
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Conclusions and future work
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Radar sensing and machine learning can improve theV2V communication

Radar-aided beam tracking inV2V scenarios
• We developed machine learning based approaches for beam tracking with radar measurements

• We evaluated the performance on the data collected with a real-worldV2V testbed

• The results highlight the potential of the end-to-end solution in radar-aided beam tracking

Future work
• Generalization of the proposed radar-aided beam tracking framework

• Extension to multi-modal sensing-aided beam tracking inV2V scenarios

The dataset and implementation are available at deepsense6g.net
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Thank you


