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Challenges with vehicle-to-vehicle (V2V) communications

P Envisioned V2V communications
* Sensor-supported safety applications

* Demand high data rate

P mmWave and THz communications
* High data transfer speeds

* Large antenna array and narrow beam

* Accurate narrow beam alignment

Finding the optimal narrow beam results in a large training overhead



Challenges with vehicle-to-vehicle (V2V) communications

P Envisioned V2V communications
* Sensor-supported safety applications

* Demand high data rate

P mmWave and THz communications
* High data transfer speeds

* Large antenna array and narrow beam
High mobility

Rapidly changing beam

* Accurate narrow beam alignment

Finding the optimal narrow beam results in a large training overhead

It is challenging to support highly-mobile vehicular scenarios



Key idea: Radar-aided beam tracking

P Channels are the functions of
* Geometry of the environment

e Position/direction of the Tx/Rx

P Multi-modal vehicular sensors v o
* Already available for other applications S 7/¥ S =——

P o
* Example: Automotive radar sensors
R

Can we use radar sensing for beam tracking in V2V scenarios?

Can the developed solutions perform well in the real world?



System model

P A transmitter vehicle with a single antenna

B A receiver vehicle

* A set of linear mmWave antenna arrays
* A set of off-the-shelf FMCW radars

* Cover the whole circular directions

d € {front, right, back, left}

P Radar-aided mmVWave beam tracking

l.
2.

Observe a sequence of radar measurements

Predict the optimal beam

Radar Sensing

I I
Optimal Beam

Radar Reflections " comm. Antennas
—< Radar Antennas

Observation window (7,)



System model

Communication model

P Channel model

Number of paths

hy = 3,7 aga(0%3,05,)

AN

Complex path gain Array response vector

P Received signal ... symbol

I'g
Yd = \/S_Cffhds + 1 <«—— Noise

NN

Power gain Combining vector

fd — {fd,17' . '7fd,B}

Pre-defined codebook

Radar Sensing

I
Optimal Beam

Radar Reflections

—q Comm. Antennas
—< Radar Antennas

P Optimal direction and beam index

1max
d,b

S.t.

£55ha|?

d € {front, right, back, left},
be{l,...,B}.



System model

Radar model

P Chirp signal
S sin (27| fot + %tz]) if 0 <1t < Thctive
chlrp (t) — .
0 otherwise

P Transmit signal (Radar frame)

chlrp 1

tx /
Sframe E : chlrp t —C- TPRI)

Round-trip time of

P IF signal of a chirp sensing signal
S
Senirp(t) = V E&r €xp (j27r [STt + foi — 57‘1)
7N
Transmission power Reflection/scattering

gain gain




Radar-aided V2V beam tracking problem

P In this work, we aim to answer the following questions
* Can we use radar sensing for beam tracking in V2V scenarios!?
* Can the developed algorithms work well in the real world?

P Challenges in the real world

i. Multiple objects in the highly dynamic environment

ii. Noisy radar data from the mobile receiver/radar & Crmrrr _
iii. Multiple potential directions of linear arrays & &
| Simplify this challenge

* Focus on the tracking within a single receive array/radar pair

* Assume the receive array/radar pair does not change within the sequence of samples

l Induce additional difficulty

* The proposed algorithm needs to accommodate the data from different array/radar pairs



Radar-aided V2V beam tracking problem

Radar Radar sensing information f\

Measurements (RGN @ === _e=mmmmmmmmmmmmmee—aa [ Cyrrent beam
— Optimal 1~ ______ 1_ ______ 1’ I
Xt:{X't_To+17"'7Xt} Mapping Beam Index V -----

Previous B_eam Function t — To +1 t—1 t
Information

—

*
bt—TO—I—l

Observation window (T,)

P Mapping function — Convert the observed sensing and beam info. into the optimal beam index
fo (X, b 1, 1) =0

P Objective — Design a mapping function that targets optimal beam prediction

T
. 1
fay p— - 1 * >k
e al"é?{f’r(f)lax T ; {bi=fo(Xi b7 1, 1)}

How can we develop an efficient solution for this problem?



Approach |: Beam tracking with transmitter identification

B Overview

Radar Detected Tracked Predicted
Pre-processing Object Objects Tx Info. Beam Index

Tx Identification Beam
Detection and Tracking Tracking
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Approach |: Beam tracking with transmitter identification

B> Overview
Tracked Predicted

Radar Detected
Tx Info. Beam Index

Pre-processing Object ubida®l T Identification Beam
Detection and Tracking Tracking

l.  Radar pre-processing

Range-Doppler Map HRP = zgﬁ”{t | Fop (Xa,;,;)|

Radar Cube HEC = | F3p (X)) Detected object
|
L
ll. Object detection ol l 5
* Apply CFAR method and clustering algorithm to range-Doppler maps & _ - &lm 0
a
 Estimate the angle from the range and Doppler slice in the radar cube 2 NI

Range Angle
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Approach |: Beam tracking with transmitter identification

B Overview
Predicted

Detected Tracked
Beam Index

Radar
Tx Info.

Pre-processing Object iobida T Identification Beam
Detection and Tracking Tracking

lIl. Transmitter identification with the first radar measurement

//
Given beam Find the
information Beam angle < closest angle . E:] < Identified Tx

Antenna array %
© Angle

Doppler

V. Transmitter tracking — Find the closest object

: Next sample
>

(n, o'y

R
ange Identified Tx Range Tracked Tx

Doppler
Doppler
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Approach |: Beam tracking with transmitter identification

B Overview

Radar
Pre-processing Object

Detection

V. Beam tracking

Detected

Objects

Tx Identification

Tracked

and Tracking

* Input: Tracked transmitter information (range, Doppler, angle)

¢ Output: Prediction of current optimal beam index

Input

Transmitter informaiton

tx
O

-

Neural Network

e

tx
Ot_To_'_l, DY

tx
. 7Ot

LSTM Layers

—— — — — —

-
(7]
—
eee | =
c
3.
-

~_— e — — ——

FC Layers A

— - — — —

Tx Info.

Beam

Tracking

Output
Predicted Beam

— b

Predicted
Beam Index
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Approach ll: Beam tracking with end-to-end ML

B Overview

Radar Predicted
Measurements Radar Radar Maps Beam Index

Beam
Pre-processing Tracking

P End-to-end learning

* Input: Range-Doppler maps, previous optimal beam index

¢ Output: Prediction of current optimal beam index

Neural Network

Input ( CNN & FC Layers LSTM Layers FC Layers )

______ - m— ==
Radar Maps LSTM Unit \| ! | Output
'HRD [ : I | Predicted Beam
t LSTM Unit| ! l >
ok e s

t—T,+12- > Lt : [T [
E |
7 \ /

—————————— J

Previous Optimal Beam
*

t—T,+1



Evaluation setup: DeepSense 6G dataset

DeepSense 6G Dataset

P A large scale real-world multi-modal dataset

P Co-existing sensing and wireless data

V2V Testbed

P Mobile receiver (Unit |)

* Four FMCW radars — Each radar employs one transmit antenna and four receive antennas

~_Unit1, g

* Four 60GHz mmWave antenna arrays — Each array has an ULA structure with |6 antennas
* Oversampled beamforming codebook with 64 beams

* FMCW radars operate at a different frequency band (Starting frequency: 77GHz) than the communication

P Mobile transmitter (Unit 2)

e 60GHz omnidirectional antenna
15



Evaluation setup: Al-ready dataset and metric

Al-Ready Dataset

Radar sensing information Current beam
P Max observation window length: T, =10  __cemmmmm=mmmmmmee /
< y
P Keep the sequences with changing beam indices | 1 """" t """ 1 4—»1
P Number of data sequences: 3649 f—9| o |f—1 ¢
P Data split (Train/Test): 70/30% « >
Observation window (T, = 10)

Evaluation Metric

B TOP-I( accuracy Optimal beam index
Nsample k l Predicted beam index with the j highest confidence score
Acctop—k —

ZZ Zl{b *=b;,

sample
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Results: Top-k accuracy of beam tracking

Beam-hold method (Baseline) Gain provided by end-to-end solution in top-5 prediction
P Previous beam is used as the predicted beam /
09 . | B A
Z; _ b* / —Top-5 Accuracy
t — Yt—T,4+1 0.8 -41-Beam-Hold i
: = End-to-End
@ Tx Detection+LSTM

P +1 and £2 indices are used for top-3 and -5 predictions

o
o

End-to-end solution

P Outperform the baseline method

Accuracy
o
(@) ]

-_— .
-_—
—

P Provide gain by using the radar-aided beam tracking 04r T Lo R Py B
03] l
Transmitter identification based solution oal .

P Limited by the low angular resolution of the radar

e
—

Observation interval

The end-to-end solution shows the potential of radar-aided beam tracking
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Results: Confusion matrix of predictions

Approach I: Transmitter Identification Approach lI: End-to-End Learning
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Predicted beam

P The low resolution of the radar causes a bias towards specific bins in the Tx tracking

Predicted beam

P The end-to-end learning refines the given beam index with the radar information

The end-to-end solution is able to overcome the low radar resolution




Conclusions and future work

P Radar sensing and machine learning can improve the V2V communication

P Radar-aided beam tracking in V2V scenarios
* We developed machine learning based approaches for beam tracking with radar measurements
* We evaluated the performance on the data collected with a real-world V2V testbed

* The results highlight the potential of the end-to-end solution in radar-aided beam tracking

P Future work
* Generalization of the proposed radar-aided beam tracking framework

* Extension to multi-modal sensing-aided beam tracking in V2V scenarios

The dataset and implementation are available at deepsenseég.net
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