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Challenges with scene depth estimation

Good depth accuracy

Optical sensing

Depth accuracy degrades
• Unfavorable light conditions
• Shiny, dark, or transparent targets
• Around-the-corner targets

Key privacy concerns
Depth estimation ambiguity for distant targets

These motivates research for other technologies to accurately sense the environment 2

Depth estimation

Measure the distance between
• The surface of the object
• The sensor

Enable some emerging applications
• Augmented and virtual reality
• Autonomous vehicles



[Taha’21] A. Taha, Q. Qu, S. Alex, P. Wang, W. L. Abbott and A. Alkhateeb, "Millimeter Wave MIMO-Based Depth Maps for Wireless Virtual and Augmented 
Reality," in IEEE Access, vol. 9, pp. 48341-48363, 2021.

Wireless sensing for scene depth estimation

Wireless sensing

Different propagation properties (mmWave)
• Unaffected by light sources
• Shiny, dark, or transparent targets
• Around-the-corner targets

Fewer privacy concerns
Detect more distant targets

3Scaling mmWave MIMO antenna array requires large hardware complexity

Good depth accuracy

Optical sensing

Depth accuracy degrades
• Unfavorable light conditions
• Shiny, dark, or transparent targets
• Around-the-corner targets

Key privacy concerns
Depth estimation ambiguity for distant targetsmmWave MIMO based wireless sensing [Taha’21]



Reconfigurable intelligent surface aided wireless sensing

Reconfigurable intelligent surface

RIS can provide a high spatial resolution for scene depth estimation! 
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Wireless sensing

Different propagation properties (mmWave)
• Unaffected by light sources
• Shiny, dark, or transparent targets
• Around-the-corner targets

Fewer privacy concerns

Detect more distant targets

Control propagation of radio waves → extend coverage

Nearly-passive elements → energy-efficient architecture

Massive number of elements → fine-grained beams



System model

Adopted wireless sensing system
Wideband FMCW radar transceiver with a complex-baseband architecture

Tx and Rx: connected through a self-isolation circuitry to a shared single antenna

Transmit signal: radar frame of 𝑀!"#$% repeated chirp signals

Channel model: wideband geometric channel model
5



System model (cont.)

Proposed RIS-aided wireless sensing process for scene depth estimation

a) Sensing signals are transmitted to the RIS through a feeding antenna
b) RIS reflects incident signals to the environment
c) Backscattered/reflected signals are reflected by the RIS back to the sensing system
d) Receive signals are processed for scene depth estimation

6



Transmit signal model
Transmit signal (one chirp)

aBP(t) =

{

cos
(

2πf0t+ πSt2
)

0 ≤ t ≤ Tactive,

0 otherwise.
(1)

Starting frequency Chirp slope Active chirp time interval

BW = STactive

Transmission bandwidth
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Transmit signal model
Transmit signal (one chirp)

Transmit signal (one radar frame)

aBP(t) =

{

cos
(

2πf0t+ πSt2
)

0 ≤ t ≤ Tactive,

0 otherwise.
(1)

xBP(t) =
√

ET

Mchirp−1
∑

c=0

aBP(t− cTPRI) (1)

= Re
(

x(t) eȷ2πf0t
)

, t ∈ R≥0 (2)

Starting frequency Chirp slope Active chirp time interval

Transmission
power

Complex-valued lowpass-equivalent transmit signal

No. of chirps per frame

Chirp repetition interval
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t

f(t)

TPRI

one frame with Mchirp chirps

Tactive

· · ·

BW = STactive

Transmission bandwidth



Receive signal model
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Real-valued bandpass 
receive signal

Complex-valued lowpass-
equivalent receive signal

Receive signal (one radar frame)

yBP(t) = Re(y(t)eȷ2πf0t)



y(t) = x(t) ∗ h(t) + w(t) =

Gtar∑

g=1

Lg∑

ℓ=1

hg,ℓ(t)x(t− ξg,ℓ) + w(t) (1)

Receive signal model
Receive signal (one radar frame)

yBP(t) = Re(y(t)eȷ2πf0t)
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ξg,ℓ = Rg,ℓ/ς

No. targets No. paths per target

Propagation delay

Lowpass-equivalent 
channel

Additive noise Complex-valued 
channel path gain

t

f(t)

f0

f0 +BW

BW

ξg,ℓ



Receive signal model

Receive baseband IF digital signal
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z[s, c] = I[s, c] + ȷQ[s, c]

Receive signal (one radar frame)

yBP(t) = Re(y(t)eȷ2πf0t)

In-phase signal Quadrature signalSample index 𝑠
Chirp index 𝑐

After passing through the mixers, the filters and the ADCs

t

f(t)

f0

f0 +BW

BW

ξg,ℓ

y(t) = x(t) ∗ h(t) + w(t) =

Gtar∑

g=1

Lg∑

ℓ=1

hg,ℓ(t)x(t− ξg,ℓ) + w(t) (1)



Receive signal model
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z[s, c] =

Gtar∑

g=1

L∑

ℓ=1

√

ρg,ℓ e
−ȷϑg,ℓ e+ȷΞg,ℓ + w[s, c]eȷχ[s] (1)

Receive signal (one radar frame)

yBP(t) = Re(y(t)eȷ2πf0t)

receive power 
of a single path

receive phase 
of a single path

Phase term contains range information

Receive baseband IF digital signal
After passing through the mixers, the filters and the ADCs

Ξg,ℓ = 2π
(

f0ξg,ℓ + Stfastξg,ℓ −
S
2
ξ2g,ℓ

)

ρg,ℓ = ET|hg,ℓ|
2

z[s, c] = I[s, c] + ȷQ[s, c]

ϑg,ℓ = arg (hg,ℓ)

χ[s] = 2πf0tfast + πSt2
fast

tfast = sTS

ξg,ℓ = Rg,ℓ/ς

Propagation delay

t

f(t)

f0

f0 +BW

BW

ξg,ℓ

fIF = Sξg,ℓ

y(t) = x(t) ∗ h(t) + w(t) =

Gtar∑

g=1

Lg∑

ℓ=1

hg,ℓ(t)x(t− ξg,ℓ) + w(t) (1)



hg,ℓ(t) = (gTΨv(θ̄g,ℓ(t))γ̄g,ℓ(t))
︸ ︷︷ ︸

Radar→RIS→Target

× (gTΨv(θ̈g,ℓ(t))γ̈g,ℓ(t))
︸ ︷︷ ︸

Target→RIS→Radar

Channel model

Assumptions
RIS is equipped with 𝑁 reconfigurable elements (phase shifters) → Not mutually correlated

Channel between the RIS and the radar transceiver → Near-field channel

Channel between the RIS and the targets → Far-field channel

Channel between the radar transceiver and the targets → Neglected (directional rad. pattern of the feeding ant.)

Reciprocal RIS interaction (incident signal directions ↔ reflected signal directions)

Channel bet. 
RIS and radar 

antenna

Forward channel path gain Backward channel path gain

Far-field array 
response vector 

bet. RIS and target

RIS interaction matrix
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Problem definition: How to construct depth maps?

1. Scanning the environment using RIS interaction vectors

14

Beam codebook ℱ:𝑀 RIS interaction vectors for 𝑀 directions

For each interaction vector, the channel and IF signal models:

F = {ψ
m

: m ∈ M,M = {0, . . . ,M − 1}}

hg,ℓ[m] = γ̄g,ℓ

(

(g ⊙ψm)
T
v
(

θ̄g,ℓ
)

)

× γ̈g,ℓ

(

(g ⊙ψm)
T
v

(

θ̈g,ℓ

))

Received sensing signal matrix

z[s,m] =

Gtar∑

g=1

L
∑

ℓ=1

√

ρg,ℓ[m] e−ȷϑg,ℓ[m]
e
+ȷΞg,ℓ

︸ ︷︷ ︸

Receive signal

+w[s,m]eȷχ[s]
︸ ︷︷ ︸

Noise

Z = [z[0], z[1], . . . , z[M − 1]]

z[m] = [z[0,m], . . . , z[Msample − 1,m]]
T



2. Processing the receive signals to construct depth maps

Problem definition: How to construct depth maps?
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How can we design the sensing framework to reduce the est. errors?

Ground-truth depth map,𝐃&'%: 2D image of depth values

Depth value in one direction:

Smallest depth bet. RIS reference element and the nearest target

Estimated depth map, %𝐃&'%:

Estimation performance metrics
• Root-mean squared error (RMSE)

• Mean absolute error (MAE)

D̂map = p(Z;F)

∆RMSE =
(

1
M ∥Dmap − p(Z;F)∥

2

2

)1/2

∆MAE = 1
M
∥Dmap − p(Z;F)∥

2

1



We adopt the design for the set of reflected angle directions, 𝒪 [Taha’21]
• Inputs: field of view, aspect ratio, horizontal and vertical resolutions
• Output: the set of reflected angle directions for a rectangular grid

Proposed solution: RIS interaction codebook design

[Taha’21] A. Taha, Q. Qu, S. Alex, P. Wang, W. L. Abbott and A. Alkhateeb, "Millimeter Wave MIMO-Based Depth Maps for Wireless Virtual and Augmented 
Reality," in IEEE Access, vol. 9, pp. 48341-48363, 2021.
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Proposed solution: RIS interaction codebook design

[Taha’21] A. Taha, Q. Qu, S. Alex, P. Wang, W. L. Abbott and A. Alkhateeb, "Millimeter Wave MIMO-Based Depth Maps for Wireless Virtual and Augmented 
Reality," in IEEE Access, vol. 9, pp. 48341-48363, 2021.
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Given the designed RIS codebook, we next present the scene depth estimation solution

We adopt the design for the set of reflected angle directions, 𝒪 [Taha’21]
• Inputs: field of view, aspect ratio, horizontal and vertical resolutions
• Output: the set of reflected angle directions for a rectangular grid

For 𝜃# ∈ 𝒪, the RIS interaction vector can be designed as

The proposed RIS interaction codebook

ψ⋆
m = argmax

ψ
m

|hg,ℓ[m]| (1)

s. t. |[ψm]n| = 1, ∀n ∈ {1, . . . , N} (2)

ψ⋆
m =

(

v(θm) ⊙ e−ȷ2π(δ−δ1)/λ
)

∗

, m ∈ M (3)

F =
{

ψm ∈ C
N×1 : ψm = (v(θm)⊙ e−ȷ2π(δ−δ1)/λ)∗, θm ∈ O

}

Prior knowledge
• The distance vector 𝜹 bet. Radar antenna and RIS elements
• The direction specified by θm



Proposed solution: RIS-based scene depth estimation

[Taha’21] A. Taha, Q. Qu, S. Alex, P. Wang, W. L. Abbott and A. Alkhateeb, "Millimeter Wave MIMO-Based Depth Maps for Wireless Virtual and Augmented 
Reality," in IEEE Access, vol. 9, pp. 48341-48363, 2021.

Operation

Acquire received sensing matrix

Estimate range vector (Fourier transform)

Construct scene depth map [Taha’21]

Apply 2D interpolation to scale the depth maps

Z
RP = FFTm (Z) ,m ∈ M

[r̂]
m

= ∆R × argmax
s

∣

∣

∣

[

Z
RP

]

s,m

∣

∣

∣
,m ∈ M
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Simulation framework

Wireless InSite: 0.1° ray spacing. Enabled interactions: reflection, diffraction, transmission, diffuse scattering

30×30; 40×40 RIS uniform planar arrays (UPAs) at 60GHz with 4GHz transmission bandwidth

Codebook: oversampling factors of 4, size of 14,400; 25,600
100° field of view, 4/3 aspect ratio, 480p resolution, 32mm sensor width (ground-truth depth map)

Assuming 38Msps sampling rate, 512 samples per chirp, and 13.47µs chirp repetition interval

Estimate depth map sensing rate 5.15; 2.90 Hz
19



Living room scenario

We compare the proposed solution against RGB-based solutions for depth estimation

15.6×6.5×3.8m indoor space
• 1.8m tall person
• Concrete for the walls
• Floorboard for the floor
• Ceiling board for the ceiling
• Glass material for the wall dividing the space
• Glass material for the TV
• Wood for the furniture

RIS 
position

The RIS is mounted on the wall behind the sofa

Follow ITU default parameter values for the materials at 60GHz

20



Living room scenario (cont.)

The proposed solution can achieve higher depth accuracy

[Hu’19] Junjie Hu, Mete Ozay, Yan Zhang, and Takayuki Okatani. "Revisiting single image depth estimation: Toward higher resolution maps with accurate object boundaries." In 2019 IEEE Winter Conference on 
Applications of Computer Vision (WACV), pp. 1043-1051. IEEE, 2019.
[Ranftl’21] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. "Vision transformers for dense prediction." In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12179-12188. 2021.

Construct the shape of the objects more clearly

Mis-detect the transparent glass wall

Higher depth errors compared to ground truth

RGB-based solutions

Proposed RIS-based solutions

Transparent glass wall can be well perceived

Lower depth errors compared to ground truth

Suffer from some inter-path interferences

Relatively wide sensing beams (errors around the edges)

21



Conclusions and future work

Optical sensing for depth perception suffers from critical limitations
• Shiny, dark, transparent, or distant objects/surfaces
• Key privacy concerns
• Around-the-corner objects/surfaces

RIS-aided mmWave sensing framework for scene depth estimation
• Design a depth map suitable RIS sensing codebook
• Develop a processing solution to estimate high-resolution depth maps
• Simulation results highlight the potential of this solution to achieve accurate depth perception

Future work
• Improve the precision of the proposed solutions
• Extend to near-field channels between RIS and targets
• Adopt target mobility, i.e., depth and Doppler velocity estimation

22
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Thank you
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Appendix



[Buzzi’21] S. Buzzi, E. Grossi, M. Lops, and L. Venturino, “Foundations of MIMO Radar Detection Aided by Reconfigurable Intelligent Surfaces,” IEEE Transactions on 
Signal Processing, vol. 70, pp. 1749–1763, 2022. 
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Channel model

Forward to the target

Backward from the target

hg,ℓ(t) = (gTΨv(θ̄g,ℓ(t))γ̄g,ℓ)(t)
︸ ︷︷ ︸

Radar→RIS→Target

× (gTΨv(θ̈g,ℓ(t))γ̈g,ℓ(t))
︸ ︷︷ ︸

Target→RIS→Radar

(1)

= γ̄g,ℓ(t)
(

(g ⊙ψ)
T
v
(

θ̄g,ℓ(t)
)
)

× γ̈g,ℓ(t)
(

(g ⊙ψ)
T
v

(

θ̈g,ℓ(t)
))

(2)



hg,ℓ(t) = (gTΨv(θ̄g,ℓ(t))γ̄g,ℓ)(t)
︸ ︷︷ ︸

Radar→RIS→Target

× (gTΨv(θ̈g,ℓ(t))γ̈g,ℓ(t))
︸ ︷︷ ︸

Target→RIS→Radar

(1)

= γ̄g,ℓ(t)
(

(g ⊙ψ)
T
v
(

θ̄g,ℓ(t)
)
)

× γ̈g,ℓ(t)
(

(g ⊙ψ)
T
v

(

θ̈g,ℓ(t)
))

(2)
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Channel model

Channel bet. 
RIS and radar 

antenna

Forward channel path gain Backward channel path gain

Far-field array 
response vector 

bet. RIS and target

RIS interaction matrix

[Buzzi’21] S. Buzzi, E. Grossi, M. Lops, and L. Venturino, “Foundations of MIMO Radar Detection Aided by Reconfigurable Intelligent Surfaces,” IEEE Transactions on 
Signal Processing, vol. 70, pp. 1749–1763, 2022. 



hg,ℓ(t) = (gTΨv(θ̄g,ℓ(t))γ̄g,ℓ)(t)
︸ ︷︷ ︸

Radar→RIS→Target

× (gTΨv(θ̈g,ℓ(t))γ̈g,ℓ(t))
︸ ︷︷ ︸

Target→RIS→Radar

(1)

= γ̄g,ℓ(t)
(

(g ⊙ψ)
T
v
(

θ̄g,ℓ(t)
)
)

× γ̈g,ℓ(t)
(

(g ⊙ψ)
T
v

(

θ̈g,ℓ(t)
))

(2)
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Channel model

RIS interaction vector

[Buzzi’21] S. Buzzi, E. Grossi, M. Lops, and L. Venturino, “Foundations of MIMO Radar Detection Aided by Reconfigurable Intelligent Surfaces,” IEEE Transactions on 
Signal Processing, vol. 70, pp. 1749–1763, 2022. 



[Buzzi’21] S. Buzzi, E. Grossi, M. Lops, and L. Venturino, “Foundations of MIMO Radar Detection Aided by Reconfigurable Intelligent Surfaces,” IEEE Transactions on 
Signal Processing, vol. 70, pp. 1749–1763, 2022. 
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Channel model

γ̄g,ℓ(t) =

√

G(Ω̄1)ζ(ω̄1,θ̄g,ℓ)

(4π)2δ2
1
d̄2

g,ℓ
(t)L̄g,ℓ(t)

e−ȷ2π(δ1+d̄g,ℓ)/λ

γ̈g,ℓ(t) =

√

σgζ(θ̈g,ℓ,ω̈1)G(Ω̈1)λ2

(4π)3d̈2

g,ℓ
(t)δ2

1
L̈g,ℓ(t)

e−ȷ2π(d̈g,ℓ+δ1)/λ

Two-hop forward and backward channel path gains

Radar range equation
§ Directional gain of feeding antenna
§ Directional RIS cross-section gain
§ Target cross-section gain 

§ Distance bet. RIS reference and target
§ Distance bet. RIS reference and radar antenna

hg,ℓ(t) = (gTΨv(θ̄g,ℓ(t))γ̄g,ℓ)(t)
︸ ︷︷ ︸

Radar→RIS→Target

× (gTΨv(θ̈g,ℓ(t))γ̈g,ℓ(t))
︸ ︷︷ ︸

Target→RIS→Radar

(1)

= γ̄g,ℓ(t)
(

(g ⊙ψ)
T
v
(

θ̄g,ℓ(t)
)
)

× γ̈g,ℓ(t)
(

(g ⊙ψ)
T
v

(

θ̈g,ℓ(t)
))

(2)



[Buzzi’21] S. Buzzi, E. Grossi, M. Lops, and L. Venturino, “Foundations of MIMO Radar Detection Aided by Reconfigurable Intelligent Surfaces,” IEEE Transactions on 
Signal Processing, vol. 70, pp. 1749–1763, 2022. 
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Channel model

Two-hop forward and backward channel path gains

[g]n =

√

G(Ω̄n)ζ(ω̄n,θ̄g,ℓ)δ21
G(Ω̄1)ζ(ω̄1,θ̄g,ℓ)δ2n

· e
−ȷ2π(δn−δ1)/λ

Normalized near-field channel path gains

Normalized gain for each RIS element 
w.r.t. RIS reference element

ϕ = {ϕaz
,ϕ

ze}

Angle notation

hg,ℓ(t) = (gTΨv(θ̄g,ℓ(t))γ̄g,ℓ)(t)
︸ ︷︷ ︸

Radar→RIS→Target

× (gTΨv(θ̈g,ℓ(t))γ̈g,ℓ(t))
︸ ︷︷ ︸

Target→RIS→Radar

(1)

= γ̄g,ℓ(t)
(

(g ⊙ψ)
T
v
(

θ̄g,ℓ(t)
)
)

× γ̈g,ℓ(t)
(

(g ⊙ψ)
T
v

(

θ̈g,ℓ(t)
))

(2)

γ̄g,ℓ(t) =

√

G(Ω̄1)ζ(ω̄1,θ̄g,ℓ)

(4π)2δ2
1
d̄2

g,ℓ
(t)L̄g,ℓ(t)

e−ȷ2π(δ1+d̄g,ℓ)/λ

γ̈g,ℓ(t) =

√

σgζ(θ̈g,ℓ,ω̈1)G(Ω̈1)λ2

(4π)3d̈2

g,ℓ
(t)δ2

1
L̈g,ℓ(t)

e−ȷ2π(d̈g,ℓ+δ1)/λ



30

FMCW radar configuration
System configuration
• 60 GHz starting frequency
• Chirp slope: 300 MHz µs()

• ADC sampling frequency: 38 MS/s
• 512 samples per chirp
• 13.47 µs chirp repetition interval

Derived parameters
• 13.47 µs chirp duration
• 4.04 GHz transmission bandwidth
• Range resolution: 3.71 cm
• Maximum range: 18.95 m
• Chirp rate: 74.2 kHz
• RIS codebook size: {14,400; 25,600}
• Depth map sensing rate: 5.15; 2.90 Hz


